Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Image subtraction is essential for transient detection in time-domain astronomy. The point-spread function (PSF), photometric scaling, and sky background generally vary with time and across the field of view for imaging data taken with ground-based optical telescopes. Image subtraction algorithms need to match these variations for the detection of flux variability. An algorithm that can be fully parallelized is highly desirable for future time-domain surveys. Here we introduce the saccadic fast Fourier transform (SFFT) algorithm we developed for image differencing. SFFT uses aδ-function basis for kernel decomposition, and the image subtraction is performed in Fourier space. This brings about a remarkable improvement in computational performance of about an order of magnitude compared to other published image subtraction codes. SFFT can accommodate the spatial variations in wide-field imaging data, including PSF, photometric scaling, and sky background. However, the flexibility of theδ-function basis may also make it more prone to overfitting. The algorithm has been tested extensively on real astronomical data taken by a variety of telescopes. Moreover, the SFFT code allows for the spatial variations of the PSF and sky background to be fitted by spline functions.more » « less
- 
            Abstract We present the photometry of 16 91T/99aa-like Type Ia Supernovae (SNe Ia) observed by the Las Cumbres Observatory. We also use an additional set of 21 91T/99aa-like SNe Ia and 87 normal SNe Ia from the literature for an analysis of the standardizability of the luminosity of 91T/99aa-like SNe. We find that 91T/99aa-like SNe are 0.2 mag brighter than normal SNe Ia, even when fully corrected by the light-curve shapes and colors. The weighted rms of the 91T/99aa-like SNe (with z CMB > 0.01) Hubble residuals is 0.25 ± 0.03 mag, suggesting that 91T/99aa-like SNe are also excellent relative distance indicators to ±12%. We compare the Hubble residuals with the pseudo-equivalent width (pEW) of Si ii λλ 6355 around the date of maximum brightness. We find that there is a broken linear correlation between those two measurements for our sample including both 91T/99aa-like and normal SNe Ia. As the pEW max (Si ii λλ 6355) increases, the Hubble residual increases when pEW max (Si ii λλ 6355) < 55.6 Å. However, the Hubble residual stays constant beyond this. Given that 91T/99aa-like SNe possess shallower Si ii lines than normal SNe Ia, the linear correlation at pEW max (Si ii λλ 6355) < 55.6 Å can account for the overall discrepancy of Hubble residuals derived from the two subgroups. Such a systematic effect needs to be taken into account when using SNe Ia to measure luminosity distances.more » « less
- 
            Abstract Dust associated with various stellar sources in galaxies at all cosmic epochs remains a controversial topic, particularly whether supernovae play an important role in dust production. We report evidence of dust formation in the cold, dense shell behind the ejecta–circumstellar medium (CSM) interaction in the Type Ia-CSM supernova (SN) 2018evt three years after the explosion, characterized by a rise in mid-infrared emission accompanied by an accelerated decline in the optical radiation of the SN. Such a dust-formation picture is also corroborated by the concurrent evolution of the profiles of the Hα emission line. Our model suggests enhanced CSM dust concentration at increasing distances from the SN as compared to what can be expected from the density profile of the mass loss from a steady stellar wind. By the time of the last mid-infrared observations at day +1,041, a total amount of 1.2 ± 0.2 × 10−2 M⊙of new dust has been formed by SN 2018evt, making SN 2018evt one of the most prolific dust factories among supernovae with evidence of dust formation. The unprecedented witness of the intense production procedure of dust may shed light on the perceptions of dust formation in cosmic history.more » « less
- 
            Photometry shown in Figure Extended Data 4 (a) of Wang, Lingzhi, et al. 2024, Nature Astronomy, https://doi.org/10.1038/s41550-024-02197-9.Phase is days since B-band maximum MJD 58352.BVgri-band photometry from 1-m network at Las Cumbres Observatory.SN2018evt_lcogt_lc.datBVgri-band photometry from 2.4-m LiJiang Telescope (LJT) and 60/90-cm XingLong Schmidt Telescope (XLST)SN2018evt_xlt_ljt_lc.datOptical and NIR spectra data shown in Figures Extended Data 2, 3, and Table Extended Data 2 of Wang, Lingzhi, et al. 2024, Nature Astronomy, NIR spectraSN2018evt_181224_spex.txt SN2018evt_190511_spex.txtSN2018evt_190617_spex.txtSN2018evt_200119_spex.txtSN2018evt_20190101_gnirs.txtSN2018evt_20190108_gnirs.txtSN2018evt_20190516_fire.datSN2018evt_20190712_fire.datOptical spectraOptical spectra observed with 2.4-m LiJiang Telescope (LJT)SN2018evt_190104_LJT_G3.datSN2018evt_190131_LJT_G3.datSN2018evt_190328_LJT_G3.datSN2018evt_190520_LJT_G3.datOptical spectra observed with 2.16-m XingLong Telescope (XLT)SN2018evt_20190208_2458551.3570_bao_bfosc.txtSN2018evt_20190220_2458563.3588_bao-bfosc.txtSN2018evt_20190413_2458587.2169_bao-bfosc.txtOptical spectra observed with 3.6-m ESO New Technology Telescope (NTT)SN2018evt_20180812_NTT_Gr13_Free_slit1.0_58346_1_e.asciSN2018evt_20190425_NTT_Gr13_Free_slit1.0_58599_1_e.asciSN2018evt_20190512_NTT_Gr13_Free_slit1.0_58616_1_e.asciSN2018evt_20190608_NTT_Gr13_Free_slit1.0_58643_1_e.asciSN2018evt_20200218_NTT_Gr13_Free_slit1.0_58899_1_e.asciSN2018evt_20200322_NTT_Gr13_Free_slit1.0_58931_1_e.asciOptical spectrum observed with WiFes mounted on 2.3-m telescope at the Siding Spring Observatory (WiFeS)SN2018evt_20190624_ANU_Wifes.datOptical spectrum observed with 2.0-m Faulkes Telescope North (FTN)/FLOYDSSN2018evt_20191224_FTN-floyds-redblu_145742.306.asciiSN2018evt_20200119_FTN-floyds-redblu_133856.906.asciiSN2018evt_20200203_FTN-floyds-redblu_125905.990.asciimore » « less
- 
            ABSTRACT This paper presents a new optical imaging survey of four deep drilling fields (DDFs), two Galactic and two extragalactic, with the Dark Energy Camera (DECam) on the 4-m Blanco telescope at the Cerro Tololo Inter-American Observatory (CTIO). During the first year of observations in 2021, >4000 images covering 21 deg2 (seven DECam pointings), with ∼40 epochs (nights) per field and 5 to 6 images per night per filter in g, r, i, and/or z have become publicly available (the proprietary period for this program is waived). We describe the real-time difference-image pipeline and how alerts are distributed to brokers via the same distribution system as the Zwicky Transient Facility (ZTF). In this paper, we focus on the two extragalactic deep fields (COSMOS and ELAIS-S1) characterizing the detected sources, and demonstrating that the survey design is effective for probing the discovery space of faint and fast variable and transient sources. We describe and make publicly available 4413 calibrated light curves based on difference-image detection photometry of transients and variables in the extragalactic fields. We also present preliminary scientific analysis regarding the Solar system small bodies, stellar flares and variables, Galactic anomaly detection, fast-rising transients and variables, supernovae, and active Galactic nuclei.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
